open-story-teller/core/chip32/chip32_assembler.cpp
Anthony Rabine bbf149dedd
Some checks are pending
Build-StoryEditor / build_linux (push) Waiting to run
Build-StoryEditor / build_win32 (push) Waiting to run
Deploy-Documentation / deploy (push) Waiting to run
Chip32: added two instructions and a macro pre-processor
2025-03-08 13:07:50 +01:00

542 lines
18 KiB
C++

/*
The MIT License
Copyright (c) 2022 Anthony Rabine
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "chip32_assembler.h"
#include <sstream>
#include <vector>
#include <algorithm>
#include <iostream>
#include <cstdint>
#include <iterator>
#include <string>
namespace Chip32
{
// =============================================================================
// GLOBAL UTILITY FUNCTIONS
// =============================================================================
static std::string ToLower(const std::string &text)
{
std::string newText = text;
std::transform(newText.begin(), newText.end(), newText.begin(), [](unsigned char c){ return std::tolower(c); });
return newText;
}
static const RegNames AllRegs[] = { { R0, "r0" }, { R1, "r1" }, { R2, "r2" }, { R3, "r3" }, { R4, "r4" }, { R5, "r5" },
{ R6, "r6" }, { R7, "r7" }, { R8, "r8" }, { R9, "r9" }, { T0, "t0" }, { T1, "t1" }, { T2, "t2" }, { T3, "t3" }, { T4, "t4" },
{ T5, "t5" }, { T6, "t6" }, { T7, "t7" }, { T8, "t8" }, { T9, "t9" },{ PC, "pc" }, { SP, "sp" }, { RA, "ra" }
};
static const uint32_t NbRegs = sizeof(AllRegs) / sizeof(AllRegs[0]);
// Keep same order than the opcodes list!!
static const std::string Mnemonics[] = {
"nop", "halt", "syscall", "lcons", "mov", "push", "pop", "store", "load", "add", "addi", "sub", "subi", "mul", "div",
"shiftl", "shiftr", "ishiftr", "and", "or", "xor", "not", "call", "ret", "jump", "jumpr", "skipz", "skipnz",
"eq", "gt", "lt"
};
static OpCode OpCodes[] = OPCODES_LIST;
static const uint32_t nbOpCodes = sizeof(OpCodes) / sizeof(OpCodes[0]);
static bool IsOpCode(const std::string &label, OpCode &op)
{
bool success = false;
std::string lowLabel = ToLower(label);
for (uint32_t i = 0; i < nbOpCodes; i++)
{
if (Mnemonics[i] == lowLabel)
{
success = true;
op = OpCodes[i];
break;
}
}
return success;
}
static inline void leu32_put(std::vector<std::uint8_t> &container, uint32_t data)
{
container.push_back(data & 0xFFU);
container.push_back((data >> 8U) & 0xFFU);
container.push_back((data >> 16U) & 0xFFU);
container.push_back((data >> 24U) & 0xFFU);
}
static inline void leu16_put(std::vector<std::uint8_t> &container, uint16_t data)
{
container.push_back(data & 0xFFU);
container.push_back((data >> 8U) & 0xFFU);
}
#define GET_REG(name, ra) if (!GetRegister(name, ra)) {\
m_lastError.line -1; \
m_lastError.message = "ERROR! Bad register name: " + name; \
return false; }
#define CHIP32_CHECK(instr, cond, error) if (!(cond)) { \
m_lastError.line = instr.line; \
m_lastError.message = error; \
return false; } \
static uint32_t convertStringToLong(const std::string& str) {
char* end;
if (str.compare(0, 2, "0x") == 0 || str.compare(0, 2, "0X") == 0) {
return static_cast<uint32_t>(strtol(str.c_str(), &end, 16));
} else if (str.compare(0, 2, "0b") == 0 || str.compare(0, 2, "0B") == 0) {
return static_cast<uint32_t>(strtol(str.c_str() + 2, &end, 2));
} else {
return static_cast<uint32_t>(strtol(str.c_str(), &end, 10));
}
}
// =============================================================================
// ASSEMBLER CLASS
// =============================================================================
bool Assembler::GetRegister(const std::string &regName, uint8_t &reg)
{
std::string lowReg = ToLower(regName);
for (uint32_t i = 0; i < NbRegs; i++)
{
if (lowReg == AllRegs[i].name)
{
reg = AllRegs[i].reg;
return true;
}
}
return false;
}
std::vector<std::string> Assembler::Split(const std::string &line)
{
std::vector<std::string> result;
std::string current;
bool inQuotes = false;
for (char c : line) {
if (c == '"') {
// Si on rencontre un guillemet, on change l'état
inQuotes = !inQuotes;
current += c;
}
else if ((c == ' ' || c == ',') && !inQuotes) {
// Si on rencontre un espace ou une virgule en dehors des guillemets
if (!current.empty()) {
result.push_back(current);
current.clear();
}
} else {
// Sinon, on ajoute le caractère au "current"
current += c;
}
}
// Ajout du dernier morceau, s'il existe
if (!current.empty()) {
result.push_back(current);
}
return result;
}
bool Assembler::GetRegisterName(uint8_t reg, std::string &regName)
{
for (uint32_t i = 0; i < NbRegs; i++)
{
if (reg == AllRegs[i].reg)
{
regName = AllRegs[i].name;
return true;
}
}
return false;
}
bool Assembler::CompileMnemonicArguments(Instr &instr)
{
uint8_t ra, rb, rc;
switch(instr.code.opcode)
{
case OP_NOP:
case OP_HALT:
case OP_RET:
// no arguments, just use the opcode
break;
case OP_SYSCALL:
instr.compiledArgs.push_back(static_cast<uint8_t>(strtol(instr.args[0].c_str(), NULL, 0)));
break;
case OP_LCONS:
GET_REG(instr.args[0], ra);
instr.compiledArgs.push_back(ra);
// Detect address or immedate value
if ((instr.args[1].at(0) == '$') || (instr.args[1].at(0) == '.')) {
instr.useLabel = true;
leu32_put(instr.compiledArgs, 0); // reserve 4 bytes
} else { // immediate value
leu32_put(instr.compiledArgs, convertStringToLong(instr.args[1]));
}
break;
case OP_POP:
case OP_PUSH:
case OP_SKIPZ:
case OP_SKIPNZ:
case OP_CALL:
case OP_JUMPR:
GET_REG(instr.args[0], ra);
instr.compiledArgs.push_back(ra);
break;
case OP_MOV:
case OP_ADD:
case OP_SUB:
case OP_MUL:
case OP_DIV:
case OP_SHL:
case OP_SHR:
case OP_ISHR:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_NOT:
GET_REG(instr.args[0], ra);
GET_REG(instr.args[1], rb);
instr.compiledArgs.push_back(ra);
instr.compiledArgs.push_back(rb);
break;
case OP_ADDI:
case OP_SUBI:
{
GET_REG(instr.args[0], ra);
instr.compiledArgs.push_back(ra);
uint32_t op = convertStringToLong(instr.args[1]);
if (op > 255) {
return false;
}
leu32_put(instr.compiledArgs, op);
break;
}
case OP_JUMP:
// Reserve 2 bytes for address, it will be filled at the end
instr.useLabel = true;
instr.compiledArgs.push_back(0);
instr.compiledArgs.push_back(0);
break;
case OP_STORE: // store @r4, r1, 2
CHIP32_CHECK(instr, instr.args[0].at(0) == '@', "Missing @ sign before register")
instr.args[0].erase(0, 1);
GET_REG(instr.args[0], ra);
GET_REG(instr.args[1], rb);
instr.compiledArgs.push_back(ra);
instr.compiledArgs.push_back(rb);
instr.compiledArgs.push_back(static_cast<uint32_t>(strtol(instr.args[2].c_str(), NULL, 0)));
break;
case OP_LOAD:
{
// We allow two forms of writing:
// - load r0, @R1, 4 ; the address is located in a register
// - load r0, $variable, 4 ; we use the variable address to get the value
//
char prefix = instr.args[1].at(0);
// Register based
if (prefix == '@')
{
instr.args[1].erase(0, 1);
GET_REG(instr.args[0], ra);
GET_REG(instr.args[1], rb);
instr.compiledArgs.push_back(ra);
instr.compiledArgs.push_back(rb);
instr.compiledArgs.push_back(static_cast<uint32_t>(strtol(instr.args[2].c_str(), NULL, 0)));
}
// Variable based
else if (prefix == '$')
{
instr.useLabel = true;
leu32_put(instr.compiledArgs, 0); // reserve 4 bytes
}
else
{
CHIP32_CHECK(instr, false, "Load source address must be @reg or $variable");
}
break;
}
case OP_CMP_EQ:
case OP_CMP_GT:
case OP_CMP_LT:
GET_REG(instr.args[0], ra);
GET_REG(instr.args[1], rb);
GET_REG(instr.args[2], rc);
instr.compiledArgs.push_back(ra);
instr.compiledArgs.push_back(rb);
instr.compiledArgs.push_back(rc);
break;
default:
CHIP32_CHECK(instr, false, "Unsupported mnemonic: " + instr.mnemonic);
break;
}
return true;
}
bool Assembler::CompileConstantArgument(Instr &instr, const std::string &a)
{
instr.compiledArgs.clear(); instr.args.clear(); instr.useLabel = false;
// Check string
if (a.size() > 2)
{
// Detected string
if ((a[0] == '"') && (a[a.size() - 1] == '"'))
{
for (unsigned int i = 1; i < (a.size() - 1); i++)
{
instr.compiledArgs.push_back(a[i]);
}
instr.compiledArgs.push_back(0);
return true;
}
// Detect label
else if (a[0] == '.')
{
// Label must be 32-bit, throw an error if not the case
CHIP32_CHECK(instr, instr.dataTypeSize == 32, "Labels must be stored in a 32-bit area (DC32)")
instr.useLabel = true;
instr.args.push_back(a);
leu32_put(instr.compiledArgs, 0); // reserve 4 bytes
return true;
}
}
// here, we check if the intergers are correct
uint32_t intVal = static_cast<uint32_t>(strtol(a.c_str(), NULL, 0));
bool sizeOk = false;
if (((intVal <= UINT8_MAX) && (instr.dataTypeSize == 8)) ||
((intVal <= UINT16_MAX) && (instr.dataTypeSize == 16)) ||
((intVal <= UINT32_MAX) && (instr.dataTypeSize == 32))) {
sizeOk = true;
}
CHIP32_CHECK(instr, sizeOk, "integer too high: " + std::to_string(intVal));
if (instr.dataTypeSize == 8) {
instr.compiledArgs.push_back(intVal);
} else if (instr.dataTypeSize == 16) {
leu16_put(instr.compiledArgs, intVal);
} else {
leu32_put(instr.compiledArgs, intVal);
}
return true;
}
bool Assembler::BuildBinary(std::vector<uint8_t> &program, Result &result)
{
program.clear();
result = { 0, 0, 0}; // clear stuff!
// serialize each instruction and arguments to program memory, assign address to variables (rom or ram)
for (auto &i : m_instructions)
{
if (i.isRamData)
{
result.ramUsageSize += i.dataLen * i.dataTypeSize/8;
}
else
{
if (i.isRomCode())
{
program.push_back(i.code.opcode);
}
result.constantsSize += i.compiledArgs.size();
std::copy (i.compiledArgs.begin(), i.compiledArgs.end(), std::back_inserter(program));
}
}
result.romUsageSize = program.size();
return true;
}
bool Assembler::Parse(const std::string &data)
{
std::stringstream data_stream(data);
std::string line;
Clear();
int code_addr = 0;
int ram_addr = 0;
int lineNum = 0;
while(std::getline(data_stream, line))
{
lineNum++;
Instr instr;
instr.line = lineNum;
size_t pos = line.find_first_of(";");
if (pos != std::string::npos) {
line.erase(pos);
}
line.erase(0, line.find_first_not_of("\t\n\v\f\r ")); // left trim
line.erase(line.find_last_not_of("\t\n\v\f\r ") + 1); // right trim
if (std::all_of(line.begin(), line.end(), ::isspace)) continue;
// Split the line
std::vector<std::string> lineParts = Split(line);
CHIP32_CHECK(instr, (lineParts.size() > 0), " not a valid line");
// Ok until now
std::string opcode = lineParts[0];
// =======================================================================================
// LABEL
// =======================================================================================
if (opcode[0] == '.')
{
CHIP32_CHECK(instr, (opcode[opcode.length() - 1] == ':') && (lineParts.size() == 1), "label must end with ':'");
// Label
opcode.pop_back(); // remove the colon character
instr.mnemonic = opcode;
instr.isLabel = true;
instr.addr = code_addr;
CHIP32_CHECK(instr, m_labels.count(opcode) == 0, "duplicated label : " + opcode);
m_labels[opcode] = instr;
m_instructions.push_back(instr);
}
// =======================================================================================
// INSTRUCTIONS
// =======================================================================================
else if (IsOpCode(opcode, instr.code))
{
instr.mnemonic = opcode;
bool nbArgsSuccess = false;
// Test nedded arguments
if ((instr.code.nbAargs == 0) && (lineParts.size() == 1))
{
nbArgsSuccess = true; // no arguments, solo mnemonic
}
else if ((instr.code.nbAargs > 0) && (lineParts.size() >= 2))
{
instr.args.insert(instr.args.begin(), lineParts.begin() + 1, lineParts.end());
CHIP32_CHECK(instr, instr.args.size() == instr.code.nbAargs,
"Bad number of parameters. Required: " + std::to_string(static_cast<int>(instr.code.nbAargs)) + ", got: " + std::to_string(instr.args.size()));
nbArgsSuccess = true;
}
else
{
CHIP32_CHECK(instr, false, "Bad number of parameters");
}
if (nbArgsSuccess)
{
CHIP32_CHECK(instr, CompileMnemonicArguments(instr) == true, "Compile failure, mnemonic or arguments");
instr.addr = code_addr;
code_addr += 1 + instr.compiledArgs.size();
m_instructions.push_back(instr);
}
}
// =======================================================================================
// CONSTANTS IN ROM OR RAM (eg: $yourLabel DC8 "a string", 5, 4, 8 (DV32 for RAM)
// C for Constant, V stands for Volatile
// =======================================================================================
else if (opcode[0] == '$')
{
instr.mnemonic = opcode;
CHIP32_CHECK(instr, (lineParts.size() >= 3), "bad number of parameters");
std::string type = lineParts[1];
CHIP32_CHECK(instr, (type.size() >= 3), "bad data type size");
CHIP32_CHECK(instr, (type[0] == 'D') && ((type[1] == 'C') || (type[1] == 'V')), "bad data type (must be DCxx or DVxx");
CHIP32_CHECK(instr, m_labels.count(opcode) == 0, "duplicated label : " + opcode);
instr.isRomData = type[1] == 'C' ? true : false;
instr.isRamData = type[1] == 'V' ? true : false;
type.erase(0, 2);
instr.dataTypeSize = static_cast<uint32_t>(strtol(type.c_str(), NULL, 0));
if (instr.isRomData)
{
instr.addr = code_addr;
m_labels[opcode] = instr; // location of the start of the data
// if ROM data, we generate one instruction per argument
// reason: arguments may be labels, easier to replace later
for (unsigned int i = 2; i < lineParts.size(); i++)
{
CHIP32_CHECK(instr, CompileConstantArgument(instr, lineParts[i]), "Compile argument error, stopping.");
m_instructions.push_back(instr);
code_addr += instr.compiledArgs.size();
instr.addr = code_addr;
}
}
else // RAM DATA, only one argument is used: the size of the array
{
instr.addr = ram_addr;
instr.dataLen = static_cast<uint16_t>(strtol(lineParts[2].c_str(), NULL, 0)) * instr.dataTypeSize/8;
ram_addr += instr.dataLen;
m_labels[opcode] = instr;
m_instructions.push_back(instr);
}
}
else
{
m_lastError.message = "Unknown mnemonic or badly formatted line";
m_lastError.line = lineNum;
return false;
}
}
// 2. Second pass: replace all label or RAM data by the real address in memory
for (auto &instr : m_instructions)
{
if (instr.useLabel && (instr.args.size() > 0))
{
// label is the first argument for jump, second position for LCONS and LOAD
uint16_t argsIndex = 1;
if (instr.code.opcode == OP_JUMP) {
argsIndex = 0;
}
std::string label = instr.args[argsIndex];
CHIP32_CHECK(instr, m_labels.count(label) > 0, "label not found: " + label);
uint16_t addr = m_labels[label].addr;
std::cout << "LABEL: " << label << " , addr: " << addr << std::endl;
instr.compiledArgs[argsIndex] = addr & 0xFF;
instr.compiledArgs[argsIndex+1] = (addr >> 8U) & 0xFF;
if ((instr.code.opcode == OP_LCONS) || (instr.code.opcode == OP_LOAD)) {
// We precise if the address is from RAM or ROM
// For that, the MSB is set to 1 (for RAM)
instr.compiledArgs[argsIndex+3] = m_labels[label].isRamData ? 0x80 : 0;
}
}
}
return true;
}
} // namespace Chip32