open-story-teller/firmware/system/ff_diskio_sdcard.c

802 lines
23 KiB
C

#if 1
/*------------------------------------------------------------------------*/
/* STM32F100: MMCv3/SDv1/SDv2 (SPI mode) control module */
/*------------------------------------------------------------------------*/
/*
/ Copyright (C) 2018, ChaN, all right reserved.
/
/ * This software is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
#include "ost_hal.h"
#include "debug.h"
#include "ff.h"
#include "diskio.h"
#include "sdcard.h"
#include "ffconf.h"
/*-----------------------------------------------------------------------*/
/* Initialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize(
BYTE drv /* Physical drive number (0..) */
)
{
if (drv)
return STA_NOINIT;
ost_hal_sdcard_set_slow_clock(); // detect using a slow SPI clock for more robustness
if (sdcard_init() != SD_RESPONSE_NO_ERROR)
return STA_NOINIT;
ost_hal_sdcard_set_fast_clock(); // Then switch to fast clock!
return 0;
}
/*-----------------------------------------------------------------------*/
/* Return Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status(
BYTE drv /* Physical drive number (0..) */
)
{
if (drv)
return STA_NOINIT;
return 0;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read(
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
if (pdrv || !count)
return RES_PARERR;
if (count == 1)
res = (DRESULT)sdcard_sector_read(sector, buff);
else
res = (DRESULT)sdcard_sectors_read(sector, buff, count);
if (res == 0x00)
return RES_OK;
return RES_ERROR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if _READONLY == 0
DRESULT disk_write(
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
if (pdrv || !count)
return RES_PARERR;
if (count == 1)
res = (DRESULT)sdcard_sector_write(sector, buff);
else
res = (DRESULT)sdcard_sectors_write(sector, buff, count);
if (res == 0)
return RES_OK;
return RES_ERROR;
}
#endif /* _READONLY */
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl(
BYTE drv, /* Physical drive number (0..) */
BYTE ctrl, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
SD_CardInfo cardinfo;
DRESULT res;
if (drv)
return RES_PARERR;
switch (ctrl)
{
case CTRL_SYNC:
// res = ( SD_WaitReady() == SD_RESPONSE_NO_ERROR ) ? RES_OK : RES_ERROR
res = RES_OK;
break;
case GET_BLOCK_SIZE:
*(WORD *)buff = FF_MAX_SS;
res = RES_OK;
break;
case GET_SECTOR_COUNT:
if (sdcard_get_card_info(&cardinfo) != SD_RESPONSE_NO_ERROR)
res = RES_ERROR;
else
{
*(DWORD *)buff = cardinfo.CardCapacity;
res = (*(DWORD *)buff > 0) ? RES_OK : RES_PARERR;
}
break;
case CTRL_TRIM:
res = (sdcard_sectors_erase(((DWORD *)buff)[0], ((DWORD *)buff)[1]) == SD_RESPONSE_NO_ERROR)
? RES_OK
: RES_PARERR;
break;
default:
res = RES_PARERR;
break;
}
return res;
}
#endif
#if 0
#define PIN_SPI0_CS 17
#define PIN_SPI0_SCK 18
#define PIN_SPI0_MOSI 19
#define PIN_SPI0_MISO 16
// const uint8_t SD_CARD_CS = 17;
// #define SDCARD_SCK 18
// #define SDCARD_MOSI 19
// #define SDCARD_MISO 16
#include "pico.h"
#include "pico/stdlib.h"
#include "hardware/clocks.h"
#include "hardware/spi.h"
#include "hardware/gpio.h"
#include "ff.h"
#include "diskio.h"
/*--------------------------------------------------------------------------
Module Private Functions
---------------------------------------------------------------------------*/
/* MMC/SD command */
#define CMD0 (0) /* GO_IDLE_STATE */
#define CMD1 (1) /* SEND_OP_COND (MMC) */
#define ACMD41 (0x80 + 41) /* SEND_OP_COND (SDC) */
#define CMD8 (8) /* SEND_IF_COND */
#define CMD9 (9) /* SEND_CSD */
#define CMD10 (10) /* SEND_CID */
#define CMD12 (12) /* STOP_TRANSMISSION */
#define ACMD13 (0x80 + 13) /* SD_STATUS (SDC) */
#define CMD16 (16) /* SET_BLOCKLEN */
#define CMD17 (17) /* READ_SINGLE_BLOCK */
#define CMD18 (18) /* READ_MULTIPLE_BLOCK */
#define CMD23 (23) /* SET_BLOCK_COUNT (MMC) */
#define ACMD23 (0x80 + 23) /* SET_WR_BLK_ERASE_COUNT (SDC) */
#define CMD24 (24) /* WRITE_BLOCK */
#define CMD25 (25) /* WRITE_MULTIPLE_BLOCK */
#define CMD32 (32) /* ERASE_ER_BLK_START */
#define CMD33 (33) /* ERASE_ER_BLK_END */
#define CMD38 (38) /* ERASE */
#define CMD55 (55) /* APP_CMD */
#define CMD58 (58) /* READ_OCR */
/* MMC card type flags (MMC_GET_TYPE) */
#define CT_MMC 0x01 /* MMC ver 3 */
#define CT_SD1 0x02 /* SD ver 1 */
#define CT_SD2 0x04 /* SD ver 2 */
#define CT_SDC (CT_SD1 | CT_SD2) /* SD */
#define CT_BLOCK 0x08 /* Block addressing */
#define CLK_SLOW (100 * KHZ)
#define CLK_FAST (40 * MHZ)
static volatile DSTATUS Stat = STA_NOINIT; /* Physical drive status */
static BYTE CardType; /* Card type flags */
static inline uint32_t _millis(void)
{
return to_ms_since_boot(get_absolute_time());
}
/*-----------------------------------------------------------------------*/
/* SPI controls (Platform dependent) */
/*-----------------------------------------------------------------------*/
static inline void cs_select(uint cs_pin)
{
asm volatile("nop \n nop \n nop"); // FIXME
gpio_put(cs_pin, 0);
asm volatile("nop \n nop \n nop"); // FIXME
}
static inline void cs_deselect(uint cs_pin)
{
asm volatile("nop \n nop \n nop"); // FIXME
gpio_put(cs_pin, 1);
asm volatile("nop \n nop \n nop"); // FIXME
}
static void FCLK_SLOW(void)
{
spi_set_baudrate(spi0, CLK_SLOW);
}
static void FCLK_FAST(void)
{
spi_set_baudrate(spi0, CLK_FAST);
}
static void CS_HIGH(void)
{
cs_deselect(PIN_SPI0_CS);
}
static void CS_LOW(void)
{
cs_select(PIN_SPI0_CS);
}
/* Initialize MMC interface */
void init_spi(void)
{
/* GPIO pin configuration */
/* pull up of MISO is MUST (10Kohm external pull up is recommended) */
/* Set drive strength and slew rate if needed to meet wire condition */
gpio_init(PIN_SPI0_SCK);
gpio_disable_pulls(PIN_SPI0_SCK);
// gpio_pull_up(PIN_SPI0_SCK);
// gpio_set_drive_strength(PIN_SPI0_SCK, PADS_BANK0_GPIO0_DRIVE_VALUE_4MA); // 2mA, 4mA (default), 8mA, 12mA
// gpio_set_slew_rate(PIN_SPI0_SCK, 0); // 0: SLOW (default), 1: FAST
gpio_set_function(PIN_SPI0_SCK, GPIO_FUNC_SPI);
gpio_init(PIN_SPI0_MISO);
gpio_disable_pulls(PIN_SPI0_MISO);
// gpio_pull_up(PIN_SPI0_MISO);
// gpio_set_schmitt(PIN_SPI0_MISO, 1); // 0: Off, 1: On (default)
gpio_set_function(PIN_SPI0_MISO, GPIO_FUNC_SPI);
gpio_init(PIN_SPI0_MOSI);
gpio_disable_pulls(PIN_SPI0_MOSI);
// gpio_pull_up(PIN_SPI0_MOSI);
// gpio_set_drive_strength(PIN_SPI0_MOSI, PADS_BANK0_GPIO0_DRIVE_VALUE_4MA); // 2mA, 4mA (default), 8mA, 12mA
// gpio_set_slew_rate(PIN_SPI0_MOSI, 0); // 0: SLOW (default), 1: FAST
gpio_set_function(PIN_SPI0_MOSI, GPIO_FUNC_SPI);
gpio_init(PIN_SPI0_CS);
gpio_disable_pulls(PIN_SPI0_CS);
// gpio_pull_up(PIN_SPI0_CS);
// gpio_set_drive_strength(PIN_SPI0_CS, PADS_BANK0_GPIO0_DRIVE_VALUE_4MA); // 2mA, 4mA (default), 8mA, 12mA
// gpio_set_slew_rate(PIN_SPI0_CS, 0); // 0: SLOW (default), 1: FAST
gpio_set_dir(PIN_SPI0_CS, GPIO_OUT);
/* chip _select invalid*/
CS_HIGH();
spi_init(spi0, CLK_SLOW);
/* SPI0 parameter config */
spi_set_format(spi0,
8, /* data_bits */
SPI_CPOL_0, /* cpol */
SPI_CPHA_0, /* cpha */
SPI_MSB_FIRST /* order */
);
}
/* Exchange a byte */
static BYTE xchg_spi(
BYTE dat /* Data to send */
)
{
uint8_t *buff = (uint8_t *)&dat;
spi_write_read_blocking(spi0, buff, buff, 1);
return (BYTE)*buff;
}
/* Receive multiple byte */
static void rcvr_spi_multi(
BYTE *buff, /* Pointer to data buffer */
UINT btr /* Number of bytes to receive (even number) */
)
{
uint8_t *b = (uint8_t *)buff;
spi_read_blocking(spi0, 0xff, b, btr);
}
/*-----------------------------------------------------------------------*/
/* Wait for card ready */
/*-----------------------------------------------------------------------*/
static int wait_ready( /* 1:Ready, 0:Timeout */
UINT wt /* Timeout [ms] */
)
{
BYTE d;
uint32_t t = _millis();
do
{
d = xchg_spi(0xFF);
/* This loop takes a time. Insert rot_rdq() here for multitask envilonment. */
} while (d != 0xFF && _millis() < t + wt); /* Wait for card goes ready or timeout */
return (d == 0xFF) ? 1 : 0;
}
/*-----------------------------------------------------------------------*/
/* Deselect card and release SPI */
/*-----------------------------------------------------------------------*/
static void deselect(void)
{
CS_HIGH(); /* Set CS# high */
xchg_spi(0xFF); /* Dummy clock (force DO hi-z for multiple slave SPI) */
}
/*-----------------------------------------------------------------------*/
/* Select card and wait for ready */
/*-----------------------------------------------------------------------*/
static int _select(void) /* 1:OK, 0:Timeout */
{
CS_LOW(); /* Set CS# low */
xchg_spi(0xFF); /* Dummy clock (force DO enabled) */
if (wait_ready(500))
return 1; /* Wait for card ready */
deselect();
return 0; /* Timeout */
}
/*-----------------------------------------------------------------------*/
/* Receive a data packet from the MMC */
/*-----------------------------------------------------------------------*/
static int rcvr_datablock( /* 1:OK, 0:Error */
BYTE *buff, /* Data buffer */
UINT btr /* Data block length (byte) */
)
{
BYTE token;
const uint32_t timeout = 200;
uint32_t t = _millis();
do
{ /* Wait for DataStart token in timeout of 200ms */
token = xchg_spi(0xFF);
/* This loop will take a time. Insert rot_rdq() here for multitask envilonment. */
} while (token == 0xFF && _millis() < t + timeout);
if (token != 0xFE)
return 0; /* Function fails if invalid DataStart token or timeout */
rcvr_spi_multi(buff, btr); /* Store trailing data to the buffer */
xchg_spi(0xFF);
xchg_spi(0xFF); /* Discard CRC */
return 1; /* Function succeeded */
}
/*-----------------------------------------------------------------------*/
/* Send a command packet to the MMC */
/*-----------------------------------------------------------------------*/
static BYTE send_cmd( /* Return value: R1 resp (bit7==1:Failed to send) */
BYTE cmd, /* Command index */
DWORD arg /* Argument */
)
{
BYTE n, res;
if (cmd & 0x80)
{ /* Send a CMD55 prior to ACMD<n> */
cmd &= 0x7F;
res = send_cmd(CMD55, 0);
if (res > 1)
return res;
}
/* Select the card and wait for ready except to stop multiple block read */
if (cmd != CMD12)
{
deselect();
if (!_select())
return 0xFF;
}
/* Send command packet */
xchg_spi(0x40 | cmd); /* Start + command index */
xchg_spi((BYTE)(arg >> 24)); /* Argument[31..24] */
xchg_spi((BYTE)(arg >> 16)); /* Argument[23..16] */
xchg_spi((BYTE)(arg >> 8)); /* Argument[15..8] */
xchg_spi((BYTE)arg); /* Argument[7..0] */
n = 0x01; /* Dummy CRC + Stop */
if (cmd == CMD0)
n = 0x95; /* Valid CRC for CMD0(0) */
if (cmd == CMD8)
n = 0x87; /* Valid CRC for CMD8(0x1AA) */
xchg_spi(n);
/* Receive command resp */
if (cmd == CMD12)
xchg_spi(0xFF); /* Diacard following one byte when CMD12 */
n = 10; /* Wait for response (10 bytes max) */
do
{
res = xchg_spi(0xFF);
} while ((res & 0x80) && --n);
return res; /* Return received response */
}
/*--------------------------------------------------------------------------
Public Functions
---------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------*/
/* Initialize disk drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize(
BYTE drv /* Physical drive number (0) */
)
{
BYTE n, cmd, ty, ocr[4];
const uint32_t timeout = 1000; /* Initialization timeout = 1 sec */
uint32_t t;
if (drv)
return STA_NOINIT; /* Supports only drive 0 */
init_spi(); /* Initialize SPI */
sleep_ms(10);
if (Stat & STA_NODISK)
return Stat; /* Is card existing in the soket? */
FCLK_SLOW();
for (n = 10; n; n--)
xchg_spi(0xFF); /* Send 80 dummy clocks */
ty = 0;
if (send_cmd(CMD0, 0) == 1)
{ /* Put the card SPI/Idle state */
t = _millis();
if (send_cmd(CMD8, 0x1AA) == 1)
{ /* SDv2? */
for (n = 0; n < 4; n++)
ocr[n] = xchg_spi(0xFF); /* Get 32 bit return value of R7 resp */
if (ocr[2] == 0x01 && ocr[3] == 0xAA)
{ /* Is the card supports vcc of 2.7-3.6V? */
while (_millis() < t + timeout && send_cmd(ACMD41, 1UL << 30))
; /* Wait for end of initialization with ACMD41(HCS) */
if (_millis() < t + timeout && send_cmd(CMD58, 0) == 0)
{ /* Check CCS bit in the OCR */
for (n = 0; n < 4; n++)
ocr[n] = xchg_spi(0xFF);
ty = (ocr[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; /* Card id SDv2 */
}
}
}
else
{ /* Not SDv2 card */
if (send_cmd(ACMD41, 0) <= 1)
{ /* SDv1 or MMC? */
ty = CT_SD1;
cmd = ACMD41; /* SDv1 (ACMD41(0)) */
}
else
{
ty = CT_MMC;
cmd = CMD1; /* MMCv3 (CMD1(0)) */
}
while (_millis() < t + timeout && send_cmd(cmd, 0))
; /* Wait for end of initialization */
if (_millis() >= t + timeout || send_cmd(CMD16, 512) != 0) /* Set block length: 512 */
ty = 0;
}
}
CardType = ty; /* Card type */
deselect();
if (ty)
{ /* OK */
FCLK_FAST(); /* Set fast clock */
Stat &= ~STA_NOINIT; /* Clear STA_NOINIT flag */
}
else
{ /* Failed */
Stat = STA_NOINIT;
}
return Stat;
}
/*-----------------------------------------------------------------------*/
/* Get disk status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status(
BYTE drv /* Physical drive number (0) */
)
{
if (drv)
return STA_NOINIT; /* Supports only drive 0 */
return Stat; /* Return disk status */
}
/*-----------------------------------------------------------------------*/
/* Read sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read(
BYTE drv, /* Physical drive number (0) */
BYTE *buff, /* Pointer to the data buffer to store read data */
LBA_t sector, /* Start sector number (LBA) */
UINT count /* Number of sectors to read (1..128) */
)
{
if (drv || !count)
return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT)
return RES_NOTRDY; /* Check if drive is ready */
if (!(CardType & CT_BLOCK))
sector *= 512; /* LBA ot BA conversion (byte addressing cards) */
if (count == 1)
{ /* Single sector read */
if ((send_cmd(CMD17, sector) == 0) /* READ_SINGLE_BLOCK */
&& rcvr_datablock(buff, 512))
{
count = 0;
}
}
else
{ /* Multiple sector read */
if (send_cmd(CMD18, sector) == 0)
{ /* READ_MULTIPLE_BLOCK */
do
{
if (!rcvr_datablock(buff, 512))
break;
buff += 512;
} while (--count);
send_cmd(CMD12, 0); /* STOP_TRANSMISSION */
}
}
deselect();
return count ? RES_ERROR : RES_OK; /* Return result */
}
#if !FF_FS_READONLY && !FF_FS_NORTC
/* get the current time */
DWORD get_fattime(void)
{
return 0;
}
#endif
#if FF_FS_READONLY == 0
/* Transmit multiple byte */
static void xmit_spi_multi(
const BYTE *buff, /* Pointer to data buffer */
UINT btx /* Number of bytes to transmit (even number) */
)
{
const uint8_t *b = (const uint8_t *)buff;
spi_write_blocking(spi0, b, btx);
}
/*-----------------------------------------------------------------------*/
/* Transmit a data packet to the MMC */
/*-----------------------------------------------------------------------*/
static int xmit_datablock( /* 1:OK, 0:Error */
const BYTE *buff, /* 512 byte data block to be transmitted */
BYTE token /* Data/Stop token */
)
{
BYTE resp;
if (!wait_ready(500))
return 0;
xchg_spi(token); /* Xmit data token */
if (token != 0xFD)
{ /* Is data token */
xmit_spi_multi(buff, 512); /* Xmit the data block to the MMC */
xchg_spi(0xFF); /* CRC (Dummy) */
xchg_spi(0xFF);
resp = xchg_spi(0xFF); /* Reveive data response */
if ((resp & 0x1F) != 0x05) /* If not accepted, return with error */
return 0;
}
return 1;
}
/*-----------------------------------------------------------------------*/
/* Write sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_write(
BYTE drv, /* Physical drive number (0) */
const BYTE *buff, /* Ponter to the data to write */
LBA_t sector, /* Start sector number (LBA) */
UINT count /* Number of sectors to write (1..128) */
)
{
if (drv || !count)
return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT)
return RES_NOTRDY; /* Check drive status */
if (Stat & STA_PROTECT)
return RES_WRPRT; /* Check write protect */
if (!(CardType & CT_BLOCK))
sector *= 512; /* LBA ==> BA conversion (byte addressing cards) */
if (!_select())
return RES_NOTRDY;
if (count == 1)
{ /* Single sector write */
if ((send_cmd(CMD24, sector) == 0) /* WRITE_BLOCK */
&& xmit_datablock(buff, 0xFE))
{
count = 0;
}
}
else
{ /* Multiple sector write */
if (CardType & CT_SDC)
send_cmd(ACMD23, count); /* Predefine number of sectors */
if (send_cmd(CMD25, sector) == 0)
{ /* WRITE_MULTIPLE_BLOCK */
do
{
if (!xmit_datablock(buff, 0xFC))
break;
buff += 512;
} while (--count);
if (!xmit_datablock(0, 0xFD))
count = 1; /* STOP_TRAN token */
}
}
deselect();
return count ? RES_ERROR : RES_OK; /* Return result */
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous drive controls other than data read/write */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl(
BYTE drv, /* Physical drive number (0) */
BYTE cmd, /* Control command code */
void *buff /* Pointer to the conrtol data */
)
{
DRESULT res;
BYTE n, csd[16];
DWORD *dp, st, ed, csize;
if (drv)
return RES_PARERR; /* Check parameter */
if (Stat & STA_NOINIT)
return RES_NOTRDY; /* Check if drive is ready */
res = RES_ERROR;
switch (cmd)
{
case CTRL_SYNC: /* Wait for end of internal write process of the drive */
if (_select())
res = RES_OK;
break;
case GET_SECTOR_COUNT: /* Get drive capacity in unit of sector (DWORD) */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16))
{
if ((csd[0] >> 6) == 1)
{ /* SDC ver 2.00 */
csize = csd[9] + ((WORD)csd[8] << 8) + ((DWORD)(csd[7] & 63) << 16) + 1;
*(DWORD *)buff = csize << 10;
}
else
{ /* SDC ver 1.XX or MMC ver 3 */
n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;
*(DWORD *)buff = csize << (n - 9);
}
res = RES_OK;
}
break;
case GET_BLOCK_SIZE: /* Get erase block size in unit of sector (DWORD) */
if (CardType & CT_SD2)
{ /* SDC ver 2.00 */
if (send_cmd(ACMD13, 0) == 0)
{ /* Read SD status */
xchg_spi(0xFF);
if (rcvr_datablock(csd, 16))
{ /* Read partial block */
for (n = 64 - 16; n; n--)
xchg_spi(0xFF); /* Purge trailing data */
*(DWORD *)buff = 16UL << (csd[10] >> 4);
res = RES_OK;
}
}
}
else
{ /* SDC ver 1.XX or MMC */
if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16))
{ /* Read CSD */
if (CardType & CT_SD1)
{ /* SDC ver 1.XX */
*(DWORD *)buff = (((csd[10] & 63) << 1) + ((WORD)(csd[11] & 128) >> 7) + 1) << ((csd[13] >> 6) - 1);
}
else
{ /* MMC */
*(DWORD *)buff = ((WORD)((csd[10] & 124) >> 2) + 1) * (((csd[11] & 3) << 3) + ((csd[11] & 224) >> 5) + 1);
}
res = RES_OK;
}
}
break;
case CTRL_TRIM: /* Erase a block of sectors (used when _USE_ERASE == 1) */
if (!(CardType & CT_SDC))
break; /* Check if the card is SDC */
if (disk_ioctl(drv, MMC_GET_CSD, csd))
break; /* Get CSD */
if (!(csd[0] >> 6) && !(csd[10] & 0x40))
break; /* Check if sector erase can be applied to the card */
dp = buff;
st = dp[0];
ed = dp[1]; /* Load sector block */
if (!(CardType & CT_BLOCK))
{
st *= 512;
ed *= 512;
}
if (send_cmd(CMD32, st) == 0 && send_cmd(CMD33, ed) == 0 && send_cmd(CMD38, 0) == 0 && wait_ready(30000))
{ /* Erase sector block */
res = RES_OK; /* FatFs does not check result of this command */
}
break;
default:
res = RES_PARERR;
}
deselect();
return res;
}
#endif