; ; Copyright (c) 2023 Raspberry Pi (Trading) Ltd. ; ; SPDX-License-Identifier: BSD-3-Clause ; .program quadrature_encoder ; the code must be loaded at address 0, because it uses computed jumps .origin 0 ; the code works by running a loop that continuously shifts the 2 phase pins into ; ISR and looks at the lower 4 bits to do a computed jump to an instruction that ; does the proper "do nothing" | "increment" | "decrement" action for that pin ; state change (or no change) ; ISR holds the last state of the 2 pins during most of the code. The Y register ; keeps the current encoder count and is incremented / decremented according to ; the steps sampled ; the program keeps trying to write the current count to the RX FIFO without ; blocking. To read the current count, the user code must drain the FIFO first ; and wait for a fresh sample (takes ~4 SM cycles on average). The worst case ; sampling loop takes 10 cycles, so this program is able to read step rates up ; to sysclk / 10 (e.g., sysclk 125MHz, max step rate = 12.5 Msteps/sec) ; 00 state JMP update ; read 00 JMP decrement ; read 01 JMP increment ; read 10 JMP update ; read 11 ; 01 state JMP increment ; read 00 JMP update ; read 01 JMP update ; read 10 JMP decrement ; read 11 ; 10 state JMP decrement ; read 00 JMP update ; read 01 JMP update ; read 10 JMP increment ; read 11 ; to reduce code size, the last 2 states are implemented in place and become the ; target for the other jumps ; 11 state JMP update ; read 00 JMP increment ; read 01 decrement: ; note: the target of this instruction must be the next address, so that ; the effect of the instruction does not depend on the value of Y. The ; same is true for the "JMP X--" below. Basically "JMP Y--, " ; is just a pure "decrement Y" instruction, with no other side effects JMP Y--, update ; read 10 ; this is where the main loop starts .wrap_target update: MOV ISR, Y ; read 11 PUSH noblock sample_pins: ; we shift into ISR the last state of the 2 input pins (now in OSR) and ; the new state of the 2 pins, thus producing the 4 bit target for the ; computed jump into the correct action for this state. Both the PUSH ; above and the OUT below zero out the other bits in ISR OUT ISR, 2 IN PINS, 2 ; save the state in the OSR, so that we can use ISR for other purposes MOV OSR, ISR ; jump to the correct state machine action MOV PC, ISR ; the PIO does not have a increment instruction, so to do that we do a ; negate, decrement, negate sequence increment: MOV Y, ~Y JMP Y--, increment_cont increment_cont: MOV Y, ~Y .wrap ; the .wrap here avoids one jump instruction and saves a cycle too % c-sdk { #include "hardware/clocks.h" #include "hardware/gpio.h" // max_step_rate is used to lower the clock of the state machine to save power // if the application doesn't require a very high sampling rate. Passing zero // will set the clock to the maximum static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint pin, int max_step_rate) { pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false); // gpio_pull_up(pin); // gpio_pull_up(pin + 1); pio_sm_config c = quadrature_encoder_program_get_default_config(0); sm_config_set_in_pins(&c, pin); // for WAIT, IN sm_config_set_jmp_pin(&c, pin); // for JMP // shift to left, autopull disabled sm_config_set_in_shift(&c, false, false, 32); // don't join FIFO's sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE); // passing "0" as the sample frequency, if (max_step_rate == 0) { sm_config_set_clkdiv(&c, 1.0); } else { // one state machine loop takes at most 10 cycles float div = (float)clock_get_hz(clk_sys) / (10 * max_step_rate); sm_config_set_clkdiv(&c, div); } pio_sm_init(pio, sm, 0, &c); pio_sm_set_enabled(pio, sm, true); } static inline int32_t quadrature_encoder_get_count(PIO pio, uint sm) { uint ret; int n; // if the FIFO has N entries, we fetch them to drain the FIFO, // plus one entry which will be guaranteed to not be stale n = pio_sm_get_rx_fifo_level(pio, sm) + 1; while (n > 0) { ret = pio_sm_get_blocking(pio, sm); n--; } return ret; } %}