Add mailbox and two tasks switching example

This commit is contained in:
Anthony Rabine 2023-07-13 23:06:41 +02:00
parent b43e0b1ac0
commit e552978acf
10 changed files with 660 additions and 391 deletions

View file

@ -35,7 +35,7 @@ set(OST_SRCS
system/debug.c
system/picture.c
system/filesystem.c
system/os.c
system/qor.c
system/qor_armv6m.s
system/audio_player.c
system/ff/ff.c

View file

@ -31,7 +31,7 @@ add_library(
pico_generate_pio_header(${PROJECT_NAME} ${CMAKE_CURRENT_LIST_DIR}/pico_i2s.pio)
pico_generate_pio_header(${PROJECT_NAME} ${CMAKE_CURRENT_LIST_DIR}/i2s.pio)
target_link_libraries(${PROJECT_NAME} INTERFACE pico_stdlib)
target_link_libraries(${PROJECT_NAME} INTERFACE pico_stdlib hardware_exception)
target_include_directories(${PROJECT_NAME} INTERFACE ${CMAKE_CURRENT_LIST_DIR})
target_sources(${PROJECT_NAME} INTERFACE

View file

@ -64,7 +64,7 @@ const uint8_t SD_CARD_CS = 17;
const uint8_t SD_CARD_PRESENCE = 24;
#include "os.h"
#include "qor.h"
static bool sys_timer_callback(struct repeating_timer *t)
{

View file

@ -3,7 +3,7 @@
#include "debug.h"
#include "filesystem.h"
#include "picture.h"
#include "os.h"
#include "qor.h"
#include "rotary-button.h"
#define RUN_TESTS 1
@ -64,16 +64,32 @@ void ost_hal_panic()
extern void qor_sleep();
static qor_mbox_t b;
typedef struct
{
uint8_t ev;
} ost_event_t;
ost_event_t ev_queue[10];
qor_tcb_t tcb1;
qor_tcb_t tcb2;
void UserTask_0(void *args)
{
// InstrumentTriggerPE11_Init();
// uint32_t count = 0;
qor_mbox_init(&b, (void **)&ev_queue, 10);
while (1)
{
ost_hal_gpio_set(OST_GPIO_DEBUG_LED, 1);
// qor_sleep();
ost_event_t *e = NULL;
qor_mbox_wait(&b, (void **)&e, 3);
for (int i = 0; i < 65500; i++)
{
@ -97,9 +113,17 @@ void UserTask_1(void *args)
{
while (1)
{
ost_system_delay_ms(1000);
for (int i = 0; i < 65500; i++)
{
for (int j = 0; j < 100; j++)
;
}
debug_printf("X\n");
ost_system_delay_ms(1000);
for (int i = 0; i < 65500; i++)
{
for (int j = 0; j < 100; j++)
;
}
}
}
/*
@ -129,7 +153,7 @@ void UserTask_3(void)
}
*/
#include "pico/stdlib.h"
extern size_t __StackTop;
int main()
{
ost_system_initialize();
@ -144,8 +168,8 @@ int main()
// ost_audio_play("out2.wav");
OS_Init(THREADFREQ);
qor_create_thread(UserTask_0, 1, "UserTask_0");
// qor_create_thread(UserTask_1, 2, "UserTask_1");
qor_create_thread(&tcb1, UserTask_0, 1, "UserTask_0");
qor_create_thread(&tcb2, UserTask_1, 2, "UserTask_1");
// OS_Thread_Create(UserTask_2, OS_SCHEDL_PRIO_MAIN_THREAD, "UserTask_2");
// OS_Thread_Create(OnboardUserButton_Task, OS_SCHEDL_PRIO_EVENT_THREAD, "OnboardUserButton_Task");
qor_start();

View file

@ -1,299 +0,0 @@
/**
* @brief
*
* // Quite OK RTOS scheduler is a very simple real-time, pre-emptive, tickless tasker
* Design goals:
* - Easily portable (limited assembly)
* - Tick-less
* - Preemptive
* - Only one inter-thread resource: mailboxes (no mutex, semaphore...)
*/
#include "ost_hal.h"
#include "debug.h"
#include "os.h"
#include <stdlib.h>
#include "pico/critical_section.h"
/**
* The fn OSAsm_ThreadSwitch, implemented in os_asm.s, is periodically called by the SchedlTimer (ISR).
* It preemptively switches to the next thread, that is, it stores the stack of the running
* thread and restores the stack of the next thread.
* It calls OS_Schedule to determine which thread is run next and update RunPt.
*/
extern void OSAsm_ThreadSwitch(void);
static critical_section_t acrit;
inline static void enable_irq()
{
critical_section_exit(&acrit);
}
inline static void disable_irq()
{
critical_section_enter_blocking(&acrit);
}
void timer_set_period(uint16_t i);
void ost_tasker_sleep_for(uint32_t ms)
{
timer_set_period(ms);
}
void ost_tasker_init()
{
ost_tasker_sleep_for(5000); // 5 seconds
}
static uint32_t counter = 0;
// void ost_tasker_timer_callback()
// {
// // debug_printf("%d\n", counter++);
// qor_switch_context();
// }
#define OS_DEBUG
/**
* TCBState indicates whether the TCB can be used by OS_ThreadCreate
* to create a new thread.
*/
typedef enum
{
TCBStateFree,
TCBStateActive
} TCBState_t;
void qor_sleep_ms(uint8_t svc, uint32_t ms)
{
__wfi;
}
/**
* Thread Control Block
*
* IMPORTANT!
* The fn OSAsm_Start and OSAsm_ThreadSwitch, implemented in os_asm.s, expect the stack pointer
* to be placed first in the struct. Don't shuffle it!
*/
typedef struct TCB
{
uint32_t *sp; /* Stack pointer, valid for threads not running */
struct TCB *next; /* Pointer to circular-linked-list of TCBs */
uint32_t sleep; /* Sleep duration in ms, zero means not sleeping */
TCBState_t status; /* TCB active or free */
Semaphore_t *blocked; /* Pointer to semaphore on which the thread is blocked, NULL if not blocked */
uint8_t priority; /* Thread priority, 0 is highest, 255 is lowest */
const char *name; /* Descriptive name to facilitate debugging */
uint32_t pc;
} TCB_t;
//==================================================================================================
// GLOBAL AND STATIC VARIABLES
//==================================================================================================
static TCB_t TCBs[MAXNUMTHREADS];
static uint32_t Stacks[MAXNUMTHREADS][STACKSIZE];
/* Pointer to the currently running thread */
TCB_t *RunPt;
static uint32_t global_stack[1000];
/* The variable ActiveTCBsCount tracks the number of TCBs in use by the OS */
static uint32_t ActiveTCBsCount;
static void OS_InitTCBsStatus(void)
{
for (uint32_t idx = 0; idx < MAXNUMTHREADS; idx++)
{
TCBs[idx].status = TCBStateFree;
}
}
void OS_Init(uint32_t scheduler_frequency_hz)
{
critical_section_init(&acrit);
OS_InitTCBsStatus();
}
void OS_ExitLoop()
{
for (;;)
;
}
extern void qor_go();
uint32_t *qor_initialize_stack(uint32_t *top_of_stack, thread_func_t task, void *args)
{
// ARM Calling convention: the folowwing registers are automatically saved onto the stack by the processor (in this ordoer on the stack)
// DDI0419C_arm_architecture_v6m_reference_manual-1.pdf B1.5.6 Exception entry behavior
top_of_stack--;
/* From the "STM32 Cortex-M4 Programming Manual" on page 23:
* attempting to execute instructions when the T bit is 0 results in a fault or lockup */
*top_of_stack = 0x01000000; /* Thumb Bit (PSR) */
top_of_stack--;
*top_of_stack = (uint32_t)task; // PC Program Counter (R15)
top_of_stack--;
*top_of_stack = (uint32_t)OS_ExitLoop; /* (LR) Link Register (Return address) R14 */
top_of_stack -= 5; // skip R12, R3, R2, R1
*top_of_stack = (uint32_t)args; // R0
top_of_stack -= 8; // R11 -> R4
return top_of_stack;
}
void qor_create_thread(thread_func_t task, uint8_t priority, const char *name)
{
assert_or_panic(ActiveTCBsCount >= 0 && ActiveTCBsCount < MAXNUMTHREADS);
disable_irq();
/* Find next available TCB */
int32_t new_tcb_idx = -1;
for (new_tcb_idx = 0; new_tcb_idx < MAXNUMTHREADS; new_tcb_idx++)
{
if (TCBs[new_tcb_idx].status == TCBStateFree)
{
break;
}
}
if (new_tcb_idx >= 0)
{
if (new_tcb_idx == 0)
{
RunPt = &(TCBs[0]);
}
else
{
TCBs[new_tcb_idx].next = RunPt->next;
}
TCBs[new_tcb_idx].sleep = 0;
TCBs[new_tcb_idx].status = TCBStateActive;
TCBs[new_tcb_idx].blocked = NULL;
TCBs[new_tcb_idx].priority = priority;
TCBs[new_tcb_idx].name = name;
TCBs[new_tcb_idx].sp = qor_initialize_stack(&Stacks[new_tcb_idx][STACKSIZE], task, (void *)name);
RunPt->next = &(TCBs[new_tcb_idx]);
ActiveTCBsCount++;
}
enable_irq();
}
void qor_start(void)
{
assert_or_panic(ActiveTCBsCount > 0);
/* Prevent the timer's ISR from firing before OSAsm_Start is called */
disable_irq();
qor_go();
/* This statement should not be reached */
ost_hal_panic();
}
void qor_scheduler(void)
{
TCB_t *next_pt = RunPt->next;
TCB_t *iterating_pt = next_pt;
/* Search for highest priority thread not sleeping or blocked */
uint32_t max_priority = RunPt->priority;
TCB_t *best_pt = next_pt;
do
{
if ((iterating_pt->priority > max_priority) && (iterating_pt->sleep == 0) && (iterating_pt->blocked == NULL))
{
best_pt = iterating_pt;
max_priority = best_pt->priority;
}
iterating_pt = iterating_pt->next;
} while (iterating_pt != next_pt);
RunPt = best_pt;
}
void OS_Thread_Suspend(void)
{
// SchedlTimer_ResetCounter();
}
void OS_Thread_Sleep(uint32_t sleep_duration_ms)
{
RunPt->sleep = sleep_duration_ms;
OS_Thread_Suspend();
}
void OS_DecrementTCBsSleepDuration(void)
{
for (size_t tcb_idx = 0; tcb_idx < MAXNUMTHREADS; tcb_idx++)
{
if (TCBs[tcb_idx].sleep > 0)
{
TCBs[tcb_idx].sleep -= 1;
}
}
}
void OS_Thread_Kill(void)
{
assert_or_panic(ActiveTCBsCount > 1);
disable_irq();
TCB_t *previous_tcb = RunPt;
while (1)
{
previous_tcb = previous_tcb->next;
if (previous_tcb->next == RunPt)
break;
}
TCB_t *next_tcb = RunPt->next;
previous_tcb->next = next_tcb;
RunPt->status = TCBStateFree;
ActiveTCBsCount--;
enable_irq();
OS_Thread_Suspend();
}
void OS_Semaphore_Wait(Semaphore_t *sem)
{
disable_irq();
(*sem) = (*sem) - 1;
if ((*sem) < 0)
{
RunPt->blocked = sem; /* Reason the thread is blocked */
enable_irq();
OS_Thread_Suspend();
}
enable_irq();
}
void OS_Semaphore_Signal(Semaphore_t *sem)
{
disable_irq();
(*sem) = (*sem) + 1;
if ((*sem) <= 0)
{
/* Search for a TCB blocked on this semaphore and wake it up */
TCB_t *a_tcb = RunPt->next;
while (a_tcb->blocked != sem)
{
a_tcb = a_tcb->next;
}
a_tcb->blocked = 0;
}
enable_irq();
}

View file

@ -1,62 +0,0 @@
#ifndef OS_H
#define OS_H
void ost_tasker_init();
extern void ost_hal_panic();
/**
* Assert, or panic.
*/
#define assert_or_panic(expr) ((expr) ? (void)0U : ost_hal_panic())
/**
* The module os encapsulates the core functionality of the operating system and
* exposes the functions for interacting with it.
*/
#include <stdint.h>
#define MAXNUMTHREADS 10 /* Maximum number of threads, allocated at compile time */
#define STACKSIZE 100 /* Number of 32-bit words in each TCB's stack */
#define THREADFREQ 1 /* Maximum time-slice, in Hz, before the scheduler is run */
#define OS_SCHEDL_PRIO_MIN 1 /* Lowest priority that can be assigned to a thread */
#define OS_SCHEDL_PRIO_MAX UINT8_MAX /* Highest priority that can be assigned to a thread */
/**
* The type Semaphore_t abstracts the semaphore's counter.
* A value of type *Semaphore_t should only be updated through the fn OS_Semaphore_Wait
* and OS_Semaphore_Signal.
*/
typedef int32_t Semaphore_t;
typedef void (*thread_func_t)(void *args);
/**
* Function descriptions are provided in os.c
*/
void OS_Init(uint32_t scheduler_frequency_hz);
// void OS_Thread_CreateFirst(thread_func_t task, uint8_t priority, const char *name);
void qor_create_thread(thread_func_t task, uint8_t priority, const char *name);
void qor_switch_context();
void qor_start(void);
void OS_Thread_Suspend(void);
void OS_Thread_Sleep(uint32_t sleep_duration_ms);
void OS_DecrementTCBsSleepDuration(void);
void OS_Thread_Kill(void);
void OS_Semaphore_Wait(Semaphore_t *sem);
void OS_Semaphore_Signal(Semaphore_t *sem);
#endif // OST_TASKER_H

451
software/system/qor.c Normal file
View file

@ -0,0 +1,451 @@
/**
* @brief
*
* // Quite OK RTOS scheduler is a very simple real-time, pre-emptive, tickless tasker
* Design goals:
* - Easily portable (limited assembly)
* - Tick-less
* - Preemptive
* - Only one inter-thread resource: mailboxes (no mutex, semaphore...)
*/
#include "ost_hal.h"
#include "debug.h"
#include "qor.h"
#include <stdlib.h>
#include "pico/critical_section.h"
#include "hardware/exception.h"
// ===========================================================================================================
// ARM GENERIC
// ===========================================================================================================
inline static void enable_irq()
{
__asm volatile("cpsie i");
}
inline static void disable_irq()
{
__asm volatile("cpsid i");
}
void qor_sleep_ms(uint8_t svc, uint32_t ms)
{
__wfi;
}
static inline void __set_PRIMASK(uint32_t priMask)
{
__asm volatile("MSR primask, %0"
:
: "r"(priMask)
: "memory");
}
static inline uint32_t __get_PRIMASK(void)
{
uint32_t result;
__asm volatile("MRS %0, primask"
: "=r"(result));
return (result);
}
static inline uint32_t qor_enter_critical(void)
{
uint32_t primask = __get_PRIMASK();
disable_irq();
return primask;
}
void qor_exit_critical(uint32_t status)
{
__set_PRIMASK(status);
}
__attribute__((naked)) void PendSV_Handler()
{
// __asm("bkpt 1");
qor_switch_context();
}
__attribute__((optimize("O0"))) static void qor_svc_call(void)
{
volatile uint32_t *icsr = (void *)0xE000ED04;
// Pend a PendSV exception using by writing 1 to PENDSVSET at bit 28
*icsr = 0x1 << 28;
// flush pipeline to ensure exception takes effect before we
// return from this routine
__asm("isb");
}
static const bool qor_inside_interrupt(void)
{
uint32_t ulCurrentInterrupt;
bool xReturn;
/* Obtain the number of the currently executing interrupt. */
__asm volatile("mrs %0, ipsr"
: "=r"(ulCurrentInterrupt)::"memory");
if (ulCurrentInterrupt == 0)
{
xReturn = false;
}
else
{
xReturn = true;
}
return xReturn;
}
// ===========================================================================================================
// GLOBAL AND STATIC VARIABLES
// ===========================================================================================================
static uint32_t Stacks[MAXNUMTHREADS][STACKSIZE];
/* Pointer to the currently running thread */
qor_tcb_t *RunPt = NULL;
static qor_tcb_t *TcbHead = NULL;
/* The variable ActiveTCBsCount tracks the number of TCBs in use by the OS */
static uint32_t ActiveTCBsCount = 0;
// ===========================================================================================================
// Quite Ok RTOS private and public functions
// ===========================================================================================================
void OS_Init(uint32_t scheduler_frequency_hz)
{
exception_set_exclusive_handler(PENDSV_EXCEPTION, PendSV_Handler);
}
void OS_ExitLoop()
{
for (;;)
;
}
extern void qor_go();
uint32_t *qor_initialize_stack(uint32_t *top_of_stack, thread_func_t task, void *args)
{
// ARM Calling convention: the folowwing registers are automatically saved onto the stack by the processor (in this ordoer on the stack)
// DDI0419C_arm_architecture_v6m_reference_manual-1.pdf B1.5.6 Exception entry behavior
top_of_stack--;
/* From the "STM32 Cortex-M4 Programming Manual" on page 23:
* attempting to execute instructions when the T bit is 0 results in a fault or lockup */
*top_of_stack = 0x01000000; /* Thumb Bit (PSR) */
top_of_stack--;
*top_of_stack = (uint32_t)task; // PC Program Counter (R15)
top_of_stack--;
*top_of_stack = (uint32_t)OS_ExitLoop; /* (LR) Link Register (Return address) R14 */
top_of_stack -= 5; // skip R12, R3, R2, R1
*top_of_stack = (uint32_t)args; // R0
top_of_stack -= 8; // R11 -> R4
return top_of_stack;
}
void qor_create_thread(qor_tcb_t *tcb, thread_func_t task, uint8_t priority, const char *name)
{
assert_or_panic(ActiveTCBsCount >= 0 && ActiveTCBsCount < MAXNUMTHREADS);
disable_irq();
tcb->state = qor_tcb_state_active;
tcb->wait_time = 0;
tcb->state = qor_tcb_state_active;
tcb->priority = priority;
tcb->name = name;
tcb->next = NULL;
tcb->mbox = NULL;
tcb->message = NULL;
tcb->wait_next = NULL;
tcb->sp = qor_initialize_stack(&Stacks[ActiveTCBsCount][STACKSIZE], task, (void *)name);
if (TcbHead == NULL)
{
TcbHead = tcb;
}
else
{
// Go to the end of the queue
qor_tcb_t *t = TcbHead;
while (t->next != NULL)
{
t = t->next;
}
// Add TCB to the end of the queue
t->next = tcb;
}
ActiveTCBsCount++;
enable_irq();
}
void qor_start(void)
{
assert_or_panic(ActiveTCBsCount > 0);
// FIXME: use the scheduler to find the best first thread to start
RunPt = TcbHead;
/* Prevent the timer's ISR from firing before OSAsm_Start is called */
disable_irq();
qor_go();
/* This statement should not be reached */
ost_hal_panic();
}
void qor_scheduler(void)
{
qor_tcb_t *t = TcbHead;
/* Search for highest priority thread not sleeping or blocked */
uint32_t max_priority = RunPt->priority;
qor_tcb_t *best_pt = RunPt;
while (t != NULL)
{
if ((t->priority > max_priority) &&
(t->wait_time == 0) &&
(t->state == qor_tcb_state_active))
{
best_pt = t;
max_priority = t->priority;
}
t = t->next;
}
RunPt = best_pt;
}
void OS_Thread_Suspend(void)
{
// SchedlTimer_ResetCounter();
}
void qor_sleep(uint32_t sleep_duration_ms)
{
// RunPt->sleep = sleep_duration_ms;
// OS_Thread_Suspend();
}
// void OS_DecrementTCBsSleepDuration(void)
// {
// for (size_t tcb_idx = 0; tcb_idx < MAXNUMTHREADS; tcb_idx++)
// {
// if (TCBs[tcb_idx].sleep > 0)
// {
// TCBs[tcb_idx].sleep -= 1;
// }
// }
// }
void OS_Thread_Kill(void)
{
/*
assert_or_panic(ActiveTCBsCount > 1);
disable_irq();
qor_tcb_t *previous_tcb = RunPt;
while (1)
{
previous_tcb = previous_tcb->next;
if (previous_tcb->next == RunPt)
break;
}
qor_tcb_t *next_tcb = RunPt->next;
previous_tcb->next = next_tcb;
RunPt->state = qor_tcb_state_free;
ActiveTCBsCount--;
enable_irq();
OS_Thread_Suspend();
*/
}
// ===========================================================================================================
// MAILBOX IMPLEMENTATION
// ===========================================================================================================
#define qor_mbox_tSendNormal 0x0
#define qor_mbox_tSendFront 0x1
void qor_mbox_init(qor_mbox_t *mbox, void **msgBuffer, uint32_t maxCount)
{
mbox->msgBuffer = msgBuffer;
mbox->maxCount = maxCount;
mbox->read = 0;
mbox->read = 0;
mbox->head = NULL;
}
uint32_t qor_mbox_wait(qor_mbox_t *mbox, void **msg, uint32_t waitTicks)
{
uint32_t status = qor_enter_critical();
if (mbox->count == 0)
{
if (waitTicks > 0)
{
// No any data, block on that resource
RunPt->mbox = mbox;
RunPt->state = qor_tcb_state_wait_mbox;
RunPt->wait_time = waitTicks;
qor_exit_critical(status);
qor_svc_call(); // call scheduler
status = qor_enter_critical();
if ((RunPt->wait_time >= 0) && (RunPt->message != NULL))
{
*msg = RunPt->message;
qor_exit_critical(status);
return QOR_MBOX_OK;
}
else
{
qor_exit_critical(status);
return QOR_MBOX_ERROR;
}
}
else
{
return QOR_MBOX_ERROR;
}
}
else
{
if ((RunPt->message != NULL))
{
*msg = RunPt->message;
qor_exit_critical(status);
return QOR_MBOX_OK;
}
else
{
qor_exit_critical(status);
return QOR_MBOX_ERROR;
}
}
}
/*
uint32_t qor_mbox_get(qor_mbox_t *mbox, void **msg)
{
uint32_t status = qor_enter_critical();
if (mbox->count > 0)
{
--mbox->count;
*msg = mbox->msgBuffer[mbox->read++];
if (mbox->read >= mbox->maxCount)
{
mbox->read = 0;
}
qor_exit_critical(status);
return tErrorNoError;
}
else
{
qor_exit_critical(status);
return tErrorResourceUnavaliable;
}
}
*/
/*
uint32_t qor_mbox_notify(qor_mbox_t *mbox, void *msg, uint32_t notifyOption)
{
uint32_t status = qor_enter_critical();
if (tEventWaitCount(&mbox->event) > 0)
{
tTask *task = tEventWakeUp(&mbox->event, (void *)msg, tErrorNoError);
if (task->prio < currentTask->prio)
{
tTaskSched();
}
}
else
{
if (mbox->count >= mbox->maxCount)
{
qor_exit_critical(status);
return tErrorResourceFull;
}
if (notifyOption & qor_mbox_tSendFront)
{
if (mbox->read <= 0)
{
mbox->read = mbox->maxCount - 1;
}
else
{
--mbox->read;
}
mbox->msgBuffer[mbox->read] = msg;
}
else
{
mbox->msgBuffer[mbox->write++] = msg;
if (mbox->write >= mbox->maxCount)
{
mbox->write = 0;
}
}
mbox->count++;
}
qor_exit_critical(status);
return tErrorNoError;
}
*/
void qor_mbox_flush(qor_mbox_t *mbox)
{
uint32_t status = qor_enter_critical();
/*
if (tEventWaitCount(&mbox->event) == 0)
{
mbox->read = 0;
mbox->write = 0;
mbox->count = 0;
}
*/
qor_exit_critical(status);
}
uint32_t mbox_destroy(qor_mbox_t *mbox)
{
uint32_t status = qor_enter_critical();
/*
uint32_t count = tEventRemoveAll(&mbox->event, (void *)0, tErrorDel);
qor_exit_critical(status);
if (count > 0)
{
tTaskSched();
}
*/
return 0; // count;
}
void qor_mbox_get_stats(qor_mbox_t *mbox, mbox_stats_t *info)
{
uint32_t status = qor_enter_critical();
info->count = mbox->count;
info->maxCount = mbox->maxCount;
info->taskCount = 0;
qor_tcb_t *head = mbox->head;
while (head != NULL)
{
info->taskCount++;
head = head->wait_next;
}
qor_exit_critical(status);
}

117
software/system/qor.h Normal file
View file

@ -0,0 +1,117 @@
#ifndef QOR_H
#define QOR_H
extern void ost_hal_panic();
/**
* Assert, or panic.
*/
#define assert_or_panic(expr) ((expr) ? (void)0U : ost_hal_panic())
/**
* The module os encapsulates the core functionality of the operating system and
* exposes the functions for interacting with it.
*/
#include <stdint.h>
#define MAXNUMTHREADS 10 /* Maximum number of threads, allocated at compile time */
#define STACKSIZE 100 /* Number of 32-bit words in each TCB's stack */
#define THREADFREQ 1 /* Maximum time-slice, in Hz, before the scheduler is run */
#define OS_SCHEDL_PRIO_MIN 1 /* Lowest priority that can be assigned to a thread */
#define OS_SCHEDL_PRIO_MAX UINT8_MAX /* Highest priority that can be assigned to a thread */
/**
* The type Semaphore_t abstracts the semaphore's counter.
* A value of type *Semaphore_t should only be updated through the fn OS_Semaphore_Wait
* and OS_Semaphore_Signal.
*/
typedef int32_t Semaphore_t;
typedef void (*thread_func_t)(void *args);
// ===========================================================================================================
// THREADS API
// ===========================================================================================================
/**
* @brief RTOS Task state
*
*/
typedef enum
{
qor_tcb_state_active,
qor_tcb_state_wait_mbox,
qor_tcb_state_sleep
} qor_tcb_state_t;
/**
* @brief Thread Control Block
*
* IMPORTANT! keep the stack pointer on top, it is required by the task switch assembly
*
*/
typedef struct qor_mbox_t qor_mbox_t;
typedef struct TCB
{
uint32_t *sp; /* Stack pointer, valid for threads not running */
struct TCB *next; /* Pointer to circular-linked-list of TCBs */
struct TCB *wait_next; // Next TCB in waiting list
qor_tcb_state_t state; /* TCB active or free */
uint32_t wait_time; //!< Timeout for mbox maiting or sleep
qor_mbox_t *mbox; /* Pointer to mailbox on which the thread is blocked, NULL if not blocked */
void *message; //<! Actually the message transmitted
uint8_t priority; /* Thread priority, 0 is highest, 255 is lowest */
const char *name; /* Descriptive name to facilitate debugging */
} qor_tcb_t;
void OS_Init(uint32_t scheduler_frequency_hz);
// void OS_Thread_CreateFirst(thread_func_t task, uint8_t priority, const char *name);
void qor_create_thread(qor_tcb_t *tcb, thread_func_t task, uint8_t priority, const char *name);
void qor_switch_context();
void qor_start(void);
void OS_Thread_Suspend(void);
void qor_sleep(uint32_t sleep_duration_ms);
void OS_Thread_Kill(void);
void OS_Semaphore_Wait(Semaphore_t *sem);
void OS_Semaphore_Signal(Semaphore_t *sem);
// ===========================================================================================================
// MAILBOX API
// ===========================================================================================================
struct qor_mbox_t
{
qor_tcb_t *head;
uint32_t count;
uint32_t read;
uint32_t write;
uint32_t maxCount;
void **msgBuffer;
};
typedef struct
{
uint32_t count;
uint32_t maxCount;
uint32_t taskCount;
} mbox_stats_t;
#define QOR_MBOX_OK 1
#define QOR_MBOX_ERROR 2
void qor_mbox_init(qor_mbox_t *mbox, void **msgBuffer, uint32_t maxCount);
uint32_t qor_mbox_wait(qor_mbox_t *mbox, void **msg, uint32_t waitTicks);
#endif // QOR_H

View file

@ -6,8 +6,6 @@
.thumb_func
@ The .global directive gives the symbols external linkage.
@ For clarity, the fn OSAsm_ThreadSwitch is exported as TIM2_IRQHandler, so that the vector table
@ in startup.s doesn't need to be modified.
.global qor_go
.global qor_switch_context
.global qor_sleep
@ -86,27 +84,13 @@ qor_go:
bx r3 @ /* Finally, jump to the user defined task code. */
@ .section .text.qor_sleep
@ .type qor_sleep, %function
@ qor_sleep:
@ mov r1, r0 @ copy sleep value in second argument
@ movs r0, #1 @ sleep is SVC 1
@ mov r2, lr @ remember where we are
@ bl qor_svc_call
@ wfi
@ bx lr
@ EnterCriticalSection:
@ MRS r0, PRIMASK /* Save interrupt state. */
@ CPSID i /* Turn off interrupts. */
@ BX lr /* Return. */
@ ExitCriticalSection:
@ MSR PRIMASK, r0 /* Restore interrupt states. */
@ BX lr /* Return. */
@ The fn OSAsm_ThreadSwitch, implemented in os_asm.s, is periodically called by the SchedlTimer (ISR).
@ It preemptively switches to the next thread, that is, it stores the stack of the running
@ thread and restores the stack of the next thread.
@ It calls OS_Schedule to determine which thread is run next and update RunPt.
@ EXC_RETURN value to return to Thread mode, while restoring state from PSP.
.equ EXC_RETURN, 0xfffffffd

View file

@ -0,0 +1,54 @@
.syntax unified @ See https://sourceware.org/binutils/docs/as/ARM_002dInstruction_002dSet.html
.cpu cortex-m4
.fpu softvfp
.thumb
@ The .global directive gives the symbols external linkage.
@ For clarity, the fn OSAsm_ThreadSwitch is exported as TIM2_IRQHandler, so that the vector table
@ in startup.s doesn't need to be modified.
.global OSAsm_Start
.set TIM2_IRQHandler, OSAsm_ThreadSwitch
.global TIM2_IRQHandler
.extern RunPt
.extern SchedlTimer_ClearITFlag
.extern OS_Scheduler
.section .text.OSAsm_Start
.type OSAsm_Start, %function
OSAsm_Start:
CPSID I @ disable interrupts
LDR R0, =RunPt @ R0 = &RunPt; // TCB_t** R0 = &RunPt
LDR R1, [R0] @ R1 = *R0; // TCB_t* R1 = RunPt
LDR SP, [R1] @ SP = *R1; // uint32_t SP = *(RunPt.sp)
@ now we switched to the thread's stack, which we populated before
POP {R4-R11} @ pop regs R4-R11
POP {R0-R3} @ pop regs R0-R3
POP {R12} @ pop reg R12
POP {LR} @ discard LR
POP {LR} @ pop PC to the link register (start location)
POP {R1} @ discard PSR
CPSIE I @ enable interrupts
BX LR @ start first thread
.section .text.OSAsm_ThreadSwitch
.type OSAsm_ThreadSwitch, %function
OSAsm_ThreadSwitch:
@ save R0-R3,R12,LR,PC,PSR
CPSID I @ prevent interrupt during context-switch
PUSH {R4-R11} @ save remaining regs R4-R11
LDR R0, =RunPt @ R0 = &RunPt; // TCB_t** R0 = &RunPt
LDR R1, [R0] @ R1 = *R0; // TCB_t* R1 = RunPt
STR SP, [R1] @ *R1 = SP; // *(RunPt.sp) = SP
PUSH {R0, LR} @ push R0 and LR, so that fn calls don't loose them
BL SchedlTimer_ClearITFlag @ clear SchedlTimer interrupt flag
BL OS_Scheduler @ call OS_Scheduler, RunPt is updated
POP {R0, LR} @ restore R0 and LR
LDR R1, [R0] @ R1 = *R0; // TCB_t* R1 = RunPt
LDR SP, [R1] @ SP = *R1; // uint32_t SP = *(RunPt.sp)
@ now we switched to the new thread's stack
POP {R4-R11} @ restore regs R4-R11
CPSIE I @ tasks run with interrupts enabled
BX LR @ restore R0-R3,R12,LR,PC,PSR